Steady-state and Time-resolved Spectroscopic Studies of Benzanilides

Józef Heldt^{a, b}, Janina R. Heldt^b, and Jerzy Kamiński^b

^a Institute of Physics, Pedagogical University at Słupsk, 76-200 Słupsk, Poland ^b Institute of Experimental Physics, University of Gdańsk, 80-952 Gdańsk, Poland

Reprint requests to Dr. J. R. Heldt; Fax: +48-58 341-31-75

Z. Naturforsch. **54a**, 495–502 (1999); received May 18, 1999

Steady-state and time-resolved spectroscopic studies of benzanilide (I) and *N*-methylbenzanilide (II) were performed at 298 and 77 K in various solvents. The results indicate that benzanilide fluorescence in non-polar solvents at room temperature involves three independent modes of emission: $F_1(LE)$ normal fluorescence from the initially excited state $S_1(LE)$ with $\lambda_{max}=320$ nm, $F_2'(PT)$ fluorescence from the proton transfer tautomer with $\lambda_{max}=468$ nm, $F_2''(CT)$ fluorescence from the species where intramolecular charge transfer appears, with $\lambda_{max}=510$ nm. At 77 K in MCH a new fluorescence band, F_{ag} , appears at $\lambda_{max}=415$ nm instead of the $F_2'(PT)$ and $F_2''(CT)$ fluorescence. This new emission originates from benzanilide dipolar aggregates or cis-imidol dimers. The decay times of these emission modes are different.

N-methylbenzanilide, dissolved in nonpopular and weakly polar solvents at room temperature and at 77 K, shows only two fluorescence modes, i.e., the normal and the charge-transfer emissions at 320 nm and 520 nm, respectively. The fluorescence is deactivated with two decay times, 30 ps and 2.05 ns, in MCH solution.

Key words: Benzanilides; Absorption; Emission and Picosecond Transient Absorption Spectra; Fluorescence Decay Times.